

 Navigation

 	
 index

 	
 next |

 	featuremonkey 0.2.1 documentation

Welcome to featuremonkey’s documentation!

featuremonkey is a tool to support feature oriented programming (FOP) in python.

featuremonkey is a tiny library to enable feature oriented programming (FOP) in Python.
Feature oriented software development(FOSD) is a methodology to build and maintain software product lines.
Products are composed automatically from a set of feature modules and may share a set of features and differ in others.

There are multiple definitions of what a feature really is. Here, we use the definition of Apel et al.:

A feature is a structure that extends and modifies the structure of
a given program in order to satisfy a stakeholder’s requirement,
to implement and encapsulate a design decision,
and to offer a configuration option [ALMK] .

When trying to modularize software-systems to acheive reusability, components come to mind.
However, there is a problem with that: large components are very specific which limits reuse;
many small components often make it necessary to write larger amounts of glue code to integrate them.

So components are nice — but it feels like there is something missing.

Features provide an additional dimension of modularity by allowing the developer to encapsulate
code related to a specific concern that is scattered across multiple locations of the codebase into feature modules.
Products can then be composed automatically by selecting a set of feature modules.

Common approaches to FOSD are the use of generative techniques
i.e. composing a product`s code and other artefacts as part of the build process,
the use of specialized programming languages with feature support,
or making features explicit using IDE support.

featuremonkey implements feature composition by using monkeypatching i.e. structures are dynamically redefined at runtime.

Fun facts on featuremonkey for FOSD people

	features are bound at startup time or later (dynamic feature binding)

	however, feature binding is not fully dynamic as there is no way to unbind a feature once it has been bound.

	featuremonkey uses delegation layers that are injected at runtime when composing the features.

	featuremonkey composes objects(instances that is)

	packages, modules, classes, functions, methods and so on are all objects in python ... therefore, featuremonkey can compose those as well.

	featuremonkey uses monkeypatching to bind features: it adapts the interpreter state.

The basic operation offered by featuremonkey is compose.

Feature Oriented Software Development

Getting started

	Installation
	Installing the latest stable version

	Installing the development version

featuremonkey Reference

	featuremonkey Reference
	Feature Structure Trees

	FST Declaration

	FST nesting

	FST Composition

	Feature Layout

	Product Selection

Changelog

0.2

	first release on PYPI

	composer is now class based

	fixes compose_later composition order

	initial docs

0.1

	initial version

Indices and tables

	Index

	Module Index

	Search Page

	[ALMK]	S. Apel, C. Lengauer, B. Möller, and C. Kästner.
An Algebra for Features and Feature Composition.
In Proceedings of the International Conference on
Algebraic Methodology and Software Technology (AMAST),
volume 5140 of Lecture Notes in Computer Science,
pages 36–50. Springer-Verlag, 2008.

 Copyright 2012-2013, Hendrik Speidel.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.1

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	featuremonkey 0.2.1 documentation

Installation

Installing the latest stable version

Make sure you have pip installed. featuremonkey can then be installed using the following command:

pip install featuremonkey

Installing the development version

To get the development version of featuremonkey directly from github, use:

pip install git+https://github.com/henzk/featuremonkey.git#egg=featuremonkey

You can check by importing featuremonkey from a python prompt.
If you don’t see an error, everything should be ok.

 Copyright 2012-2013, Hendrik Speidel.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.1

 Navigation

 	
 index

 	
 previous |

 	featuremonkey 0.2.1 documentation

featuremonkey Reference

Feature Structure Trees

featuremonkey recognizes python packages, modules, classes, functions and methods as being part of the FST.

FST Declaration

FSTs are declared as modules or classes depending on the preference of the user. modules and classes can be mixed arbitrarily.

Note

when using classes, please make sure to use new style classes. Old style classes are completely unsupported by featuremonkey - because they are old and are removed from the python language with 3.0. To create a new style class, simply inherit from object or another new style class explicitely.

FSTs specify introductions and refinements of structures contained in the global interpreter state.
This is done by defining specially crafted names inside the FST module/class.

FST Introduction

Introductions are useful to add new attributes to existing packages/modules/classes/instances.

An introduction is specified by creating a name starting with introduce_ followed by the name to introduce directly inside the FST module/class.
The attribute value will be used like so to derive the value to introduce:

	If the FST attribute value is not callable, it is used as the value to introduce without further processing.

	If it is a callable, it is called to obtain the value to introduce. The callable will be called without arguments and must return this value.

Example:

class TestFST1(object):
 #introduce name ``a`` with value ``7``
 introduce_a = 7

 #introduce name ``b`` with value ``6``
 def introduce_b(self):
 return 6

 #introduce method ``foo`` that returns ``42`` when called
 def introduce_foo(self):
 def foo(self):
 return 42

 return foo

Warning

Names can only be introduced if they do not already exist in the current interpreter state.
Otherwise compose will raise a CompositionError. If that happens, the product may be in an
inconsistent state. Consider restarting the whole product!

FST Refinement

Refinements are used to refine existing attributes of packages/modules/classes/instances.

An introduction is specified much like an introduction.
It is done by creating a name starting with refine_ followed by the name to refine directly inside the FST module/class.
The attribute value will be used like so to derive the value to introduce:

	If the FST attribute value is not callable, it is used as the refined value without further processing. This is a replacement

	If it is a callable e.g. a method, it is called to obtain the refined value. The callable will be called with the single argument original and must return this value. original is a reference to the current implementation of the name that is to be refined. It is analogous to super in OOP.

Example:

class TestFST1(object):
 #refine name ``a`` with value ``7``
 refine_a = 7

 #refine name ``b`` with value ``6``
 def introduce_b(self, original):
 return 6

 #refine method ``foo`` to make it return double the value of before.
 def refine_foo(self, original):
 def foo(self):
 return orginal(self) * 2

 return foo

Note

when calling original in a method refinement(for both classes and instances), you need to explicitely pass self as first parameter to original.

Warning

Names can only be refined if they exist in the current interpreter state.
Otherwise compose will raise a CompositionError. If that happens, the product may be in an
inconsistent state. Consider restarting the whole product!

FST nesting

FSTs can be nested to refine nested structures of the interpreter state.
To create a child FST node, create a name starting with child_ followed by the nested name.
The value must be either a FST class or instance or a FST module.
As an example, consider a refinement to the os module.
We want to introduce os.foo and also refine os.path.join.
We could do this by composing a FST on os to introduce foo and then composing another FST on os.path that refines join.
Alternatively, we can use FST nesting and specify it as follows:

class os(object):
 introduce_foo = 123
 class child_path(object):
 def refine_join(self, original):
 def join(*elems):
 return original(elems)
 return join

Got it?

FST Composition

	
featuremonkey.compose(self, *things)

	compose applies multiple fsts onto a base implementation.
Pass the base implementation as last parameter.
fsts are merged from RIGHT TO LEFT (like function application)
e.g.:

	class MyFST(object):

	#place introductions and refinements here
introduce_foo = ‘bar’

compose(MyFST(), MyClass)

	
featuremonkey.compose_later(self, *things)

	register list of things for composition using compose()

compose_later takes a list of fsts.
The last element specifies the base module as string
things are composed directly after the base module
is imported by application code

Feature Layout

Product Selection

	
featuremonkey.select(self, *features)

	selects the features given as string
e.g
passing ‘hello’ and ‘world’ will result in imports of
‘hello’ and ‘world’. Then, if possible ‘hello.feature’
and ‘world.feature’ are imported and select is called
in each feature module.

	
featuremonkey.select_equation(self, filename)

	

 Copyright 2012-2013, Hendrik Speidel.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.1

 Navigation

 	
 index

 	featuremonkey 0.2.1 documentation

Index

 C
 | S

C

 	

 	compose() (in module featuremonkey)

 	

 	compose_later() (in module featuremonkey)

S

 	

 	select() (in module featuremonkey)

 	

 	select_equation() (in module featuremonkey)

 Copyright 2012-2013, Hendrik Speidel.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 	latest

 	0.2.1

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_modules/featuremonkey.html

 Navigation

 		
 index

 		featuremonkey 0.2.1 documentation »

 		Module code »

 Source code for featuremonkey

from __future__ import absolute_import
from featuremonkey.composer import compose, compose_later,\
 select, select_equation

__version__ = '0.2.1'
__author__ = 'Hendrik Speidel <hendrik@schnapptack.de>'

 © Copyright 2012-2013, Hendrik Speidel.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.2.1

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		featuremonkey 0.2.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2013, Hendrik Speidel.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.2.1

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

_modules/index.html

 Navigation

 		
 index

 		featuremonkey 0.2.1 documentation »

 All modules for which code is available

		featuremonkey

 © Copyright 2012-2013, Hendrik Speidel.
 Created using Sphinx 1.1.3+.

 Brought to you by Read the Docs

 		latest

 		0.2.1

