
featuremonkey Documentation
Release 0.2.1

Hendrik Speidel

January 28, 2013





CONTENTS

i



ii



featuremonkey Documentation, Release 0.2.1

featuremonkey is a tool to support feature oriented programming (FOP) in python.

featuremonkey is a tiny library to enable feature oriented programming (FOP) in Python. Feature oriented soft-
ware development(FOSD) is a methodology to build and maintain software product lines. Products are composed
automatically from a set of feature modules and may share a set of features and differ in others.

There are multiple definitions of what a feature really is. Here, we use the definition of Apel et al.:

A feature is a structure that extends and modifies the structure of a given program in order to satisfy a
stakeholder’s requirement, to implement and encapsulate a design decision, and to offer a configuration
option [ALMK] .

When trying to modularize software-systems to acheive reusability, components come to mind. However, there is
a problem with that: large components are very specific which limits reuse; many small components often make it
necessary to write larger amounts of glue code to integrate them.

So components are nice — but it feels like there is something missing.

Features provide an additional dimension of modularity by allowing the developer to encapsulate code related to a
specific concern that is scattered across multiple locations of the codebase into feature modules. Products can then be
composed automatically by selecting a set of feature modules.

Common approaches to FOSD are the use of generative techniques i.e. composing a product‘s code and other artefacts
as part of the build process, the use of specialized programming languages with feature support, or making features
explicit using IDE support.

featuremonkey implements feature composition by using monkeypatching i.e. structures are dynamically rede-
fined at runtime.

CONTENTS 1



featuremonkey Documentation, Release 0.2.1

2 CONTENTS



CHAPTER

ONE

FUN FACTS ON FEATUREMONKEY
FOR FOSD PEOPLE

• features are bound at startup time or later (dynamic feature binding)

• however, feature binding is not fully dynamic as there is no way to unbind a feature once it has been bound.

• featuremonkey uses delegation layers that are injected at runtime when composing the features.

• featuremonkey composes objects(instances that is)

• packages, modules, classes, functions, methods and so on are all objects in python ... therefore, featuremonkey
can compose those as well.

• featuremonkey uses monkeypatching to bind features: it adapts the interpreter state.

The basic operation offered by featuremonkey is compose.

3



featuremonkey Documentation, Release 0.2.1

4 Chapter 1. Fun facts on featuremonkey for FOSD people



CHAPTER

TWO

FEATURE ORIENTED SOFTWARE
DEVELOPMENT

5



featuremonkey Documentation, Release 0.2.1

6 Chapter 2. Feature Oriented Software Development



CHAPTER

THREE

GETTING STARTED

3.1 Installation

3.1.1 Installing the latest stable version

Make sure you have pip installed. featuremonkey can then be installed using the following command:

pip install featuremonkey

3.1.2 Installing the development version

To get the development version of featuremonkey directly from github, use:

pip install git+https://github.com/henzk/featuremonkey.git#egg=featuremonkey

You can check by importing featuremonkey from a python prompt. If you don’t see an error, everything should
be ok.

7



featuremonkey Documentation, Release 0.2.1

8 Chapter 3. Getting started



CHAPTER

FOUR

FEATUREMONKEY REFERENCE

4.1 featuremonkey Reference

4.1.1 Feature Structure Trees

featuremonkey recognizes python packages, modules, classes, functions and methods as being part of the FST.

4.1.2 FST Declaration

FSTs are declared as modules or classes depending on the preference of the user. modules and classes can be mixed
arbitrarily.

Note: when using classes, please make sure to use new style classes. Old style classes are completely unsupported
by featuremonkey - because they are old and are removed from the python language with 3.0. To create a new style
class, simply inherit from object or another new style class explicitely.

FSTs specify introductions and refinements of structures contained in the global interpreter state. This is done by
defining specially crafted names inside the FST module/class.

FST Introduction

Introductions are useful to add new attributes to existing packages/modules/classes/instances.

An introduction is specified by creating a name starting with introduce_ followed by the name to introduce directly
inside the FST module/class. The attribute value will be used like so to derive the value to introduce:

• If the FST attribute value is not callable, it is used as the value to introduce without further processing.

• If it is a callable, it is called to obtain the value to introduce. The callable will be called without arguments and
must return this value.

Example:

class TestFST1(object):
#introduce name ‘‘a‘‘ with value ‘‘7‘‘
introduce_a = 7

#introduce name ‘‘b‘‘ with value ‘‘6‘‘
def introduce_b(self):

return 6

9



featuremonkey Documentation, Release 0.2.1

#introduce method ‘‘foo‘‘ that returns ‘‘42‘‘ when called
def introduce_foo(self):

def foo(self):
return 42

return foo

Warning: Names can only be introduced if they do not already exist in the current interpreter state. Other-
wise compose will raise a CompositionError. If that happens, the product may be in an inconsistent state.
Consider restarting the whole product!

FST Refinement

Refinements are used to refine existing attributes of packages/modules/classes/instances.

An introduction is specified much like an introduction. It is done by creating a name starting with refine_ followed
by the name to refine directly inside the FST module/class. The attribute value will be used like so to derive the value
to introduce:

• If the FST attribute value is not callable, it is used as the refined value without further processing. This is a
replacement

• If it is a callable e.g. a method, it is called to obtain the refined value. The callable will be called with the single
argument original and must return this value. original is a reference to the current implementation of
the name that is to be refined. It is analogous to super in OOP.

Example:

class TestFST1(object):
#refine name ‘‘a‘‘ with value ‘‘7‘‘
refine_a = 7

#refine name ‘‘b‘‘ with value ‘‘6‘‘
def introduce_b(self, original):

return 6

#refine method ‘‘foo‘‘ to make it return double the value of before.
def refine_foo(self, original):

def foo(self):
return orginal(self) * 2

return foo

Note: when calling original in a method refinement(for both classes and instances), you need to explicitely pass
self as first parameter to original.

Warning: Names can only be refined if they exist in the current interpreter state. Otherwise compose will raise
a CompositionError. If that happens, the product may be in an inconsistent state. Consider restarting the
whole product!

10 Chapter 4. featuremonkey Reference



featuremonkey Documentation, Release 0.2.1

4.1.3 FST nesting

FSTs can be nested to refine nested structures of the interpreter state. To create a child FST node, create a name starting
with child_ followed by the nested name. The value must be either a FST class or instance or a FST module. As an
example, consider a refinement to the os module. We want to introduce os.foo and also refine os.path.join.
We could do this by composing a FST on os to introduce foo and then composing another FST on os.path that
refines join. Alternatively, we can use FST nesting and specify it as follows:

class os(object):
introduce_foo = 123
class child_path(object):

def refine_join(self, original):
def join(*elems):

return original(elems)
return join

Got it?

4.1.4 FST Composition

featuremonkey.compose(self, *things)
compose applies multiple fsts onto a base implementation. Pass the base implementation as last parameter. fsts
are merged from RIGHT TO LEFT (like function application) e.g.:

class MyFST(object): #place introductions and refinements here introduce_foo = ‘bar’

compose(MyFST(), MyClass)

featuremonkey.compose_later(self, *things)
register list of things for composition using compose()

compose_later takes a list of fsts. The last element specifies the base module as string things are composed
directly after the base module is imported by application code

4.1.5 Feature Layout

4.1.6 Product Selection

featuremonkey.select(self, *features)
selects the features given as string e.g passing ‘hello’ and ‘world’ will result in imports of ‘hello’ and ‘world’.
Then, if possible ‘hello.feature’ and ‘world.feature’ are imported and select is called in each feature module.

featuremonkey.select_equation(self, filename)

4.1. featuremonkey Reference 11



featuremonkey Documentation, Release 0.2.1

12 Chapter 4. featuremonkey Reference



CHAPTER

FIVE

CHANGELOG

0.2

• first release on PYPI

• composer is now class based

• fixes compose_later composition order

• initial docs

0.1

• initial version

13



featuremonkey Documentation, Release 0.2.1

14 Chapter 5. Changelog



CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

15



featuremonkey Documentation, Release 0.2.1

16 Chapter 6. Indices and tables



BIBLIOGRAPHY

[ALMK] S. Apel, C. Lengauer, B. Möller, and C. Kästner. An Algebra for Features and Feature Composition. In
Proceedings of the International Conference on Algebraic Methodology and Software Technology (AMAST),
volume 5140 of Lecture Notes in Computer Science, pages 36–50. Springer-Verlag, 2008.

17


